BIASED POSITIONAL GAMES FOR WHICH RANDOM STRATEGIES ARE NEARLY OPTIMAL

MAŁGORZATA BEDNARSKA, TOMASZ ŁUCZAK[†]

Received August 23, 1999

For a graph G and natural numbers n and q let $\mathbf{G}(G;n,q)$ be the game on the complete graph K_n in which two players, Maker and Breaker, alternately claim 1 and q edges respectively. Maker's aim is to build a copy of G while Breaker tries to prevent it. Let $m(G) = \max\left\{\frac{e(H)-1}{v(H)-2}: H\subseteq G, v(H)\geq 3\right\}$. It is shown that there exist constants c_0 and C_0 such that Maker has a winning strategy in $\mathbf{G}(G;n,q)$ if $q\leq c_0n^{1/m(G)}$, while for $q\geq C_0n^{1/m(G)}$ the game can be won by Breaker.

1. Introduction

Let n, q be natural numbers and G be a graph. In the note we study a game G(G; n, q) played on the complete graph K_n on n vertices by two players, Maker and Breaker, who build two edge-disjoint subgraphs of K_n . In each round of the game Maker chooses an edge of K_n , which has not been claimed previously, and Breaker answers by picking at most q new edges from K_n . The game ends if each of $\binom{n}{2}$ edges of K_n is claimed by either of the players. If the graph constructed during the game by Maker contains a copy of G he wins, otherwise he loses.

The game $\mathbf{G}(G;n,q)$ is a special case of positional games on graphs and hypergraphs extensively studied by Beck [1–4]. Most of the results on $\mathbf{G}(G;n,q)$ concern graphs G whose size depends on n, e.g. hamiltonian cycles, spanning trees, big stars or large complete subgraphs. For example,

Mathematics Subject Classification (2000): 91A43, 91A24, 05C80.

[†] Partially supported by KBN grant 2 P03A 021 17.

for q = 1, the size of the biggest clique Maker can build in K_n is of the order $\log n$ (see [1]). A fast winning strategy for Maker in $\mathbf{G}(K_m; n, 1)$ with $m = (1 + o(1))\log_2 n$ was found by Pekeč [8], who also showed that a similar strategy can by applied to win $\mathbf{G}(K_m; n, q)$ for an appropriately chosen m = m(n, q). His result and a straightforward application of Beck's theorem [2] imply that the maximum m for which Maker can win $\mathbf{G}(K_m; n, q)$ is of the order $\log n/\log q$, provided q = q(n) and 1/q = o(1).

Chvátal and Erdős [5] asked about the "threshold value" $q_0 = q_0(n)$ such that for $q \leq q_0(n)$ Maker has a winning strategy for $\mathbf{G}(G; n, q)$ while for $q > q_0(n)$ the game can be won by Breaker. It is known that $q_0(n)$ is of order $n/\log n$ if Maker wants to build a spanning tree [5] or a hamiltonian cycle [3].

Beck pointed out that there are remarkable similarities between results on positional games played on graphs and threshold properties of random graphs (see [2, 4]). In this note we explore this relation and use results on random graphs to show that in $\mathbf{G}(G;n,q)$ the "random strategy" is almost optimal for Maker. We consider only the case in which G is fixed, i.e. it does not depend on n. This kind of games, when G is a clique, was proposed by Chvátal and Erdős [5], who proved that the game $\mathbf{G}(K_3;n,q)$ can be won by Maker if $q < (2n+2)^{1/2} - 5/2$, and by Breaker if $q \ge 2n^{1/2}$.

For a graph H let v(H) denote the number of vertices of H and e(H) stand for the number of its edges. For a graph G with at least three vertices we define

$$m(G) = \max_{\substack{H \subseteq G \\ v(H) \ge 3}} \frac{e(H) - 1}{v(H) - 2}.$$

The main result of this note states that the function q = q(n), "critical" for $\mathbf{G}(G; n, q)$, is of the order $n^{1/m(G)}$.

Theorem 1. For every graph G which contains at least 3 nonisolated vertices there exist positive constants c_0 , C_0 and n_0 such that for every $n \ge n_0$ the following holds.

- (i) If $q \leq c_0 n^{1/m(G)}$ then Maker has a winning strategy in the game $\mathbf{G}(G; n, q)$.
- (ii) If $q \ge C_0 n^{1/m(G)}$ then Breaker can win $\mathbf{G}(G; n, q)$.

The probabilistic proof of the first part of Theorem 1 is given in the next section. Then we apply a "derandomization" argument, similar to that used by Erdős and Selfridge [6] and Beck [2], to show the second part of the assertion.

2. Maker's strategy—a probabilistic approach

In this section we show that if $q \le c_0 n^{1/m(G)}$ and the constant $c_0 > 0$ is small enough, then Maker can win $\mathbf{G}(G; n, q)$. Let us consider first the case in which G is a forest. If G consists of independent edges then m(G) = 1/2 and one can easily see that Maker can win in e(G) moves as long as $q \le \binom{n}{2}/(e(G)-1)-2n$. On the other hand if G contains a path on three vertices then m(G) = 1 and, clearly, for $q \le (n-e(G))/(e(G)-1)$ it takes Maker's e(G) moves to build G.

Assume now that G contains a cycle. Let $\overline{\mathbf{G}}(G;n,q)$ denote the modification of $\mathbf{G}(G;n,q)$ in which Breaker has all the information about Maker's moves, but Maker cannot see the moves of his opponent. Thus, if Maker chooses a pair of vertices $\{v,w\}$ of K_n , it might happen that $\{v,w\}$ has been previously claimed by Breaker. In such a case the pair $\{v,w\}$ is marked as a failure and Maker loses his move. We say that Maker plays according to the random strategy, if in each move he selects a pair of vertices chosen uniformly at random among all pairs which has not been claimed by him so far. Note that if Breaker has a winning strategy for $\mathbf{G}(G;n,q)$ he can apply it to win $\overline{\mathbf{G}}(G;n,q)$. Thus, in order to prove Theorem 1(i), it is enough to show that if Maker plays according to the random strategy, there is a positive probability that he wins $\overline{\mathbf{G}}(G;n,q)$.

Theorem 2. For every G which contains a cycle there exist constants $c_0 > 0$ and n_0 such that for every $n \ge n_0$ and $q \le c_0 n^{1/m(G)}$ Maker has a random strategy in $\overline{\mathbf{G}}(G; n, q)$ which succeeds with probability at least 1/3 against any strategy of Breaker.

Remark. In fact we show that for $q \le c_0 n^{1/m(G)}$ Maker's random strategy succeeds with probability tending to 1 as $n \to \infty$.

The proof of Theorem 2 relies on certain properties of random graphs. Let us recall that $\mathbb{G}(n,M)$ is a graph chosen uniformly at random from the family of all subgraphs of K_n with n vertices and M edges, while $\mathbb{G}(n,p)$ denotes the graph obtained by removing edges of K_n with probability 1-p, independently for each edge. Typically, we are interested in the behaviour of the random graphs $\mathbb{G}(n,M)$ and $\mathbb{G}(n,p)$ for large values of n, where parameters M and p vary as functions of n.

Our argument is based on the following upper bound of the probability that a random graph contains no copies of a given graph G proved by Janson, Luczak and Ruciński [7].

Lemma 3. For every graph G containing a cycle there exist constants $c_1 > 0$ and n_1 such that for every $n \ge n_1$ and $n^{-1/m(G)} \le p \le 3n^{-1/m(G)}$

$$\mathbb{P}(\mathbb{G}(n,p) \not\supseteq G) \le \exp(-c_1 n^2 p).$$

Using elementary properties of the binomial distribution one can deduce from Lemma 3 its $\mathbb{G}(n, M)$ counterpart.

Lemma 3'. For every graph G with at least one cycle there exist constants $c'_1 > 0$ and n'_1 such that for every $n \ge n'_1$ and $\bar{M} = \lfloor n^{2-1/m(G)} \rfloor$ we have

$$\mathbb{P}(\mathbb{G}(n,\bar{M}) \not\supseteq G) \le \exp(-c_1'\bar{M}).$$

In our argument we shall need only the following consequence of the above result.

Lemma 4. For every graph G containing at least one cycle there exist constants $0 < \delta < 1$ and n_2 such that for $n \ge n_2$ and $M = 2 \lfloor n^{2-1/m(G)} \rfloor$ with probability at least 2/3 each subgraph of $\mathbb{G}(n,M)$ with $\lfloor (1-\delta)M \rfloor$ edges contains a copy of G.

Proof. Let $n_2 = n'_1$ and $0 < \delta < 1/2$ be a small constant such that

$$\delta - \delta \log \delta < c_1'/3$$
,

where n'_1 and c'_1 are such that the assertion of Lemma 3' holds. Consider pairs (F, F'), where F is a subgraph of K_n with M edges, and F' is a subgraph of F with $\lfloor (1-\delta)M \rfloor$ edges which contains no copies of G. Using Lemma 3' (with $\bar{M} = M/2$) to estimate the number of choices for F', one can bound from above the number of such pairs by

$$\exp(-c_1'M/2)\binom{\binom{n}{2}}{(1-\delta)M}\binom{\binom{n}{2}-(1-\delta)M}{\delta M}.$$

Thus, the number of choices for F is bounded from above by

$$\exp(-c_1'M/2)\binom{M}{\delta M}\binom{\binom{n}{2}}{M} \le \left(\frac{e}{\delta}\right)^{\delta M} \exp(-c_1'M/2)\binom{\binom{n}{2}}{M} \le \frac{1}{3}\binom{\binom{n}{2}}{M},$$

provided n is large enough.

Remark. Note that the assertion of Lemma 4 is equivalent to the statement that for some constant $\delta' > 0$ and every $n \ge n_0$ with probability at least 2/3 the random graph $\mathbb{G}(n,M)$ contains at least $\delta' M$ edge-disjoint copies of G. Since for a given graph H the expected number of copies of H in $\mathbb{G}(n,M)$ is $O(n^{v(H)-2e(H)}M^{e(H)})$, for any M for which the above statement holds we must have

$$\min_{H\subseteq G} \left\{ n^{v(H)-2e(H)} M^{e(H)} \right\} = \varOmega(M) \; .$$

In fact this is the condition which determines the choice of M = M(n) in Lemma 4 (and thus m(G) and q = q(n)).

Proof of Theorem 2. Let $q = 0.1\delta n^{1/m(G)}$ and $n > n_2$, where $\delta > 0$ and n_2 are chosen in such a way that the assertion of Lemma 4 holds. Consider the game $\overline{\mathbf{G}}(G;n,q)$ in which Maker plays the random strategy. Let us consider the first

$$M = 2\lfloor n^{2-1/m(G)} \rfloor \le \frac{\delta}{2(q+1)} \binom{n}{2}$$

rounds of the game. Clearly, the graph whose edge set consists of all pairs Maker has claimed up to this point can be viewed as $\mathbb{G}(n,M)$, although some of these pairs may be failures, i.e. they have been already claimed by Breaker. Nonetheless, during the first M rounds of the game both players have selected not more than $\delta/2$ of all possible pairs, and so, for $i=1,\ldots,M$, the probability that a pair chosen by Maker in his ith move is a failure is bounded from above by $\delta/2$. Consequently, for large M, with probability at least 2/3 at most δM of the pairs claimed by Maker are failures. Hence, due to Lemma 4, with probability at least 1/3 the graph built by Maker in the first M moves contains a copy of G. Thus, Maker's random strategy succeeds with probability at least 1/3.

3. Breaker's strategy

In order to prove Theorem 1(ii) we shall need some results on positional games played on hypergraphs. Let us recall that a hypergraph \mathcal{H} is a pair $(V(\mathcal{H}), E(\mathcal{H}))$, where $V(\mathcal{H})$ is the set of vertices of \mathcal{H} and the set $E(\mathcal{H})$ of edges of \mathcal{H} is a family of nonempty subsets of $V(\mathcal{H})$, We emphasize that, unlike in the graph case, we allow in \mathcal{H} multiple edges i.e., a subset of $V(\mathcal{H})$ may appear as an edge of \mathcal{H} several times.

Following Erdős and Selfridge [6] and Beck [2], we define (\mathcal{H}, p, q) -game as the game in which Maker and Breaker alternately select respectively p and q previously unclaimed vertices of the hypergraph \mathcal{H} until all the vertices have been claimed by either of the player. If at the end of the game Maker have chosen all vertices of some $A \in E(\mathcal{H})$, he wins, otherwise he loses.

For a given hypergraph \mathcal{H} and natural numbers p,q let

$$f(\mathcal{H}, p, q) = \sum_{A \in E(\mathcal{H})} (1+q)^{-|A|/p}.$$

Beck [2] showed the winning strategy for Breaker in the (\mathcal{H}, p, q) -game if $f(\mathcal{H}, p, q) < (1+q)^{-1}$. His argument relied on the fact that Breaker can play

in such a way that the function

$$g(M,B) = \sum_{\substack{A \in E(\mathcal{H})\\ A \cap B = \emptyset}} (1+q)^{-|A \setminus M|/p} ,$$

where M and B denote the sets of Maker's and Breaker's vertices respectively, never increases if it is evaluated after every move of Maker. Note that the game starts with $g(\emptyset,\emptyset) = f(\mathcal{H},p,q)$ and after the first Maker's move it can increase to at most $(q+1)f(\mathcal{H},p,q)$. Observe also that if at some stage of the game Maker's graph M contains $k \geq 0$ edges of \mathcal{H} , then $g(M,B) \geq k$. Thus, if in each of his moves Breaker tries to minimize the value of g, he can prevent Maker from claiming more than $(q+1)f(\mathcal{H},n,q)$ edges of \mathcal{H} and the following holds.

Lemma 5. In every (\mathcal{H}, p, q) -game Breaker has a strategy such that at the end of the game at most $(1+q)f(\mathcal{H}, p, q)$ edges of the hypergraph \mathcal{H} have all their vertices claimed by Maker.

Now let us return to the game $\mathbf{G}(G;n,q)$. Suppose that $m(G) = \frac{e(H)-1}{v(H)-2}$ for some $H \subseteq G$ with $v(H) \ge 3$ and H is a minimal subgraph with this property. Clearly, if Breaker has a winning strategy in $\mathbf{G}(H;n,q)$ then, with the same strategy, he can also win $\mathbf{G}(G;n,q)$. Hence, it suffices to prove Theorem 1(ii) for graphs G which are m-maximal, i.e. which fulfil the condition

$$m(G) = \frac{e(G) - 1}{v(G) - 2} > m(H)$$
 for every $H \subset G$, $v(H) \ge 3$.

For a m-maximal graph G we define a \bar{G} -graph $F^{v,w}$ as a graph F with two distinguished vertices v and w such that $F+\{v,w\}$ is a copy of G. Note that every m-maximal graph G which contains a cycle is 2-edge-connected, so for such a graph G each \bar{G} -graph is connected.

For a graph H we denote by V(H) its vertex set and by E(H) the set of its edges. Let $\{F_1^{v_1w_1},\ldots,F_t^{v_tw_t}\}$ be a family of different \bar{G} -graphs. If $|\bigcap_{i=1}^t V(F_i^{v_iw_i})| \geq 2$ we call a family $\{F_1^{v_1w_1},\ldots,F_t^{v_tw_t}\}$ a t-fan, if furthermore $|\bigcap_{i=1}^t V(F_i^{v_iw_i})| \geq 3$ we say that $\{F_1^{v_1w_1},\ldots,F_t^{v_tw_t}\}$ forms a t-flower. A t-fan $\{F_1,\ldots,F_t\}$ is simple if for $1 \leq i < j \leq t$ we have $|V(F_i^{v_iw_i}) \cap V(F_j^{v_jw_j})| = 2$. Finally, if at some moment of the game $\mathbf{G}(G;n,q)$ Maker's graph contains a \bar{G} -graph $F^{v,w}$ such that the pair $\{v,w\}$ has not been claimed by Breaker yet then we call $F^{v,w}$ dangerous. Similarly, we say a t-flower (or a t-fan) in Maker's graph is dangerous if it consists of t dangerous \bar{G} -graphs.

Lemma 6. For every m-maximal graph G that contains a cycle there exist positive constants C_1, n_1 and $\delta < 1$ such that for every $n \geq n_1$ and $q \geq C_1 n^{1/m(G)}$ Breaker has a strategy such that at each moment of the game $\mathbf{G}(G;n,q)$ there are no dangerous s-flowers in Maker's graph, where $s = \lfloor q^{1-\delta} \rfloor$.

Proof. Let G be a graph which fulfils the assumption of the lemma. If v(G) = 3 then there are no s-flowers with $s \ge 2$ and the assertion holds. Thus, assume that v(G) > 3 and set

$$\delta_1 = 1 - m(G) \Big(\max_{\substack{H \subset G \\ v(H) \ge 3}} \frac{e(G) - e(H)}{v(G) - v(H)} \Big)^{-1}.$$

Notice that $0 < \delta_1 < 1$ because G is m-maximal.

First we consider the game $\mathbf{G}(G;n,q_1)$ with $q_1 = \lceil q^{1-\delta_1/2} \rceil$ and show there exists a constant t = t(G) such that Breaker in $\mathbf{G}(G;n,q_1)$ can prevent a *t-cluster*, i.e. a graph that consists of t copies of G which intersect on three (or more) vertices.

Breaker's strategy for $\mathbf{G}(G;n,q_1)$ will be based on his strategy stated in Lemma 5 for the $(\mathcal{H},1,q_1)$ -game where \mathcal{H} is the hypergraph with vertex set $E(K_n)$ and such that every set of the edges of a t-cluster forms an edge of \mathcal{H} (note that a t-cluster is uniquely determined by the set of its edges). Thus, we need to estimate the value of $f(\mathcal{H},1,q_1)$. For every t-cluster let us order t copies G_1,\ldots,G_t of G in such a way that for each $j=1,\ldots,t_1$, we have $V(G_j) \not\subseteq \bigcup_{i=1}^{j-1} V(G_i)$, and t_1 is the largest number with this property. Then, clearly, $\frac{v-3}{v(G)-3} \leq t_1 \leq v-3$, where $v = \left|\bigcup_{i=1}^t V(G_i)\right| = \left|\bigcup_{i=1}^{t_1} V(G_i)\right|$, and

$$f(\mathcal{H}, 1, q_{1}) = (q_{1} + 1) \sum_{\substack{F \subset K_{n} \\ F \text{ is a } t\text{-cluster}}} (q_{1} + 1)^{-e(F)}$$

$$\leq \binom{n}{3} [v(G)!]^{t} \sum_{\substack{v < tv(G) \\ \binom{v-3}{v(G)-3} v(G)! \ge t}} \sum_{\substack{t_{1} = \lceil \frac{v-3}{v(G)-3} \rceil}} \binom{v-3}{v(G)-3}^{t-t_{1}}$$

$$\times \left(\sum_{\substack{H \subset G \\ 2 < v(H) < v(G)}} \binom{v-3}{v(H)-3} \binom{n-3}{v(G)-v(H)} (q_{1} + 1)^{e(H)-e(G)} \right)^{t_{1}}.$$

Indeed, the factor $\binom{n}{3}$ counts the possible choices for the vertices in the common intersection of G_1, \ldots, G_t , the sum in the paranthesis stands for the

number of ways one can add G_j to the copies G_1, \ldots, G_{j-1} we have chosen so far (here by H we denote all possible intersections $E(G_j) \cap \bigcup_{i=1}^{j-1} E(G_i)$), and the first two sums give a crude upper bound for the number of choices of the last $t-t_1$ copies of G. Thus, if by H' we denote a subgraph of G which maximizes the terms of the interior sum, then for some constant c_1 , which depends only on G,

$$f(\mathcal{H}, 1, q_1) \leq n^3 c_1^t \sum_{v = \lceil t^{1/v(G)}/3 \rceil}^{tv(G)} \left(\frac{v}{v(G)} \right)^{v(G)t} \sum_{t_1 = \lceil v/v(G) \rceil}^{v} \left(n^{v(G) - v(H')} q_1^{e(H') - e(G)} \right)^{t_1}.$$

Let $q \ge n^{1/m(G)}$. Then, by the choice of δ_1 , we get

$$n^{v(G)-v(H')}q_1^{-e(G)+e(H')} \le (q^{1-\delta_1}q_1^{-1})^{e(G)-e(H')} \le q^{-\delta_1/2},$$

and so

$$f(\mathcal{H}, 1, q_1) < q^{3m(G)} c_1^t t^2 v(G)^2 t^{tv(G)} q^{-\delta_1 t'}$$

with $t' = t^{1/v(G)}/6v(G)$. Now set

$$t = \lceil 12(1 + 3m(G))v(G)\delta_1^{-1} \rceil^{v(G)},$$

so that

$$3m(G) - \delta_1 t' < -1 - \delta_1 t'/2$$
.

Then the number of the edges of \mathcal{H} which consist of Maker's vertices at the end of the $(\mathcal{H}, 1, q_1)$ -game is bounded from above by

$$(q+1)f(\mathcal{H},1,q_1) \le c_1^t t^{tv(G)+2} v(G)^2 (q+1)q^{-1}q^{-\delta_1 t'/2} < 1$$
,

provided q is big enough and Breaker plays his strategy as given in Lemma 5.

Thus Breaker in $\mathbf{G}(G;n,q_1)$ has a strategy which prevents Maker from building a t-cluster. Observe also that this strategy does not allow Maker to obtain a dangerous s-flower with $s \ge t(q_1+1)$. Indeed, suppose it is not the case and at some moment Maker succeeds in building such an s-flower $\{F_1^{v_1w_1},\ldots,F_s^{v_sw_s}\}$. Then he can claim a pair which appears most frequently among $\{v_1,w_1\},\ldots\{v_s,w_s\}$ and continue to do so until all the pairs $\{v_i,w_i\},$ $i=1,\ldots,s$, have been claimed by either of the players. But in this way Maker could build at least $s/(q_1+1) \ge t$ copies of G intersecting on three vertices, which, as we have just shown, is impossible.

In order to complete the proof it is enough to observe that the above strategy for $\mathbf{G}(G;n,q_1)$ can be used by Breaker also in $\mathbf{G}(G;n,q)$ to prevent a dangerous s-flower in Maker's graph, where $s = \lfloor q^{1-\delta} \rfloor$, $\delta = \delta_1/4$, $q \ge n^{1/m(G)}$ and n is sufficiently large.

Lemma 7. For every m-maximal graph G that contains a cycle and every positive $\delta < 1$, there exist constants C_2 and n_2 such that for every $n \ge n_2$ and $q \ge C_2 n^{1/m(G)}$ Breaker has a strategy in $\mathbf{G}(G; n, q)$ which does not allows Maker to build $\frac{1}{2}\binom{q}{t}$ simple t-fans, where $t = \lfloor q^{\delta/3} \rfloor$.

Proof. Let G, δ and t fulfil the assumption of the lemma. We shall show that Maker cannot build $\frac{1}{2}\binom{q}{t}$ simple t-fans if Breaker in $\mathbf{G}(G;n,q)$ uses the strategy stated in Lemma 5 for a $(\mathcal{H},1,q)$ -game played on the hypergraph $\mathcal{H}=(V(\mathcal{H}),E(\mathcal{H}))$, where $V(\mathcal{H})=E(K_n)$ and every set $\bigcup_{i=1}^t E(F_i^{v_iw_i})$, where $F_1^{v_1w_1},\ldots,F_t^{v_tw_t}\subset K_n$ and $\{F_1^{v_1w_1},\ldots,F_t^{v_tw_t}\}$ is a simple t-fan, forms an edge of \mathcal{H} . (Note that different t-fans can have the same set of edges, i.e., \mathcal{H} may have some multiple edges.)

Indeed, by Lemma 5 at the end of $(\mathcal{H}, 1, q)$ -game Maker's graph contains not more than

$$r = (q+1)f(\mathcal{H}, 1, q) = (q+1) \sum_{A \in E(\mathcal{H})} (q+1)^{-|A|}$$

edges of \mathcal{H} and by the definition of \mathcal{H} one can estimate r from above by

$$r \le (q+1) \binom{n}{2} \frac{1}{t!} \left(v(G)! e(G) \binom{n}{v(G) - 2} (q+1)^{-e(G)+2} \right)^t$$

$$\le q n^2 (c_2 (n^{1/m(G)} q^{-1})^{e(G)-1} q t^{-1})^t$$

with a constant c_2 depending on G only. Now we choose constants n_2 and C_2 so that $(c_2^{-1}C_2^{e(G)-1})^{q^{\delta/3}} > 2q^{1+2m(G)}$ for $q \ge C_2 n_2^{1/m(G)}$. Then, for $t = \lfloor q^{\delta/3} \rfloor$ and every n such that $n_2 \le n \le (q/C_2)^{m(G)}$, we have

$$r \le qn^2(c_2C_2^{1-e(G)}qt^{-1})^t \le q^{1+2m(G)}(c_2C_2^{1-e(G)})^{q^{\delta/3}}(qt^{-1})^t < \frac{1}{2}\binom{q}{t}.$$

Thus, in the game $\mathbf{G}(G;n,q)$, Breaker can play in such a way that Maker's final graph contains less than $\frac{1}{2}\binom{q}{t}$ simple t-fans.

Fact 8. For every positive constant $\delta < 1$ there exists a constant $q_0 = q_0(\delta)$ such that every graph F with $q \ge q_0$ vertices and at most $q^{2-\delta}$ edges contains at least $\frac{1}{2}\binom{q}{t}$ independent sets of size $t = \lfloor q^{\delta/3} \rfloor$.

Proof. Let $0 < \delta < 1$, $t = \lfloor q^{\delta/3} \rfloor$, and let F be a graph with v(F) = q and $e(F) = \lfloor q^{2-\delta} \rfloor$. Then the number of subsets of V(F) of t vertices that are not independent obviously does not exceed

$$e(F)\binom{q-2}{t-2} \leq q^{2-\delta} \left(\frac{t}{q}\right)^2 \binom{q}{t} < 2q^{-\delta/3} \binom{q}{t} < \frac{1}{2} \binom{q}{t}$$

provided q is sufficiently large.

Before the next lemma we make a simple but useful observation. Consider $q \geq q_1 + q_2$ with some natural numbers q, q_1 and q_2 . It is obvious that if Breaker in $\mathbf{G}(G;n,q_1)$ plays some strategy that prevents Maker from claiming some structure F_1 , then Breaker in $\mathbf{G}(G;n,q)$ can play the same strategy, forgetting about the extra edges he is allowed to choose. Similarly, he can play Breaker's strategy from $\mathbf{G}(G;n,q_2)$, preventing a structure F_2 and, more importantly, he can follow both the strategies simultaneously. In this case, during the game $\mathbf{G}(G;n,q)$, Maker can build copies of neither F_1 nor F_2 .

Lemma 9. For every m-maximal graph G that contains a cycle there exist positive constants C_3 and n_3 such that for every $n \ge n_3$ and $q \ge C_3 n^{1/m(G)}$ Breaker has a strategy such that at no stage of the game $\mathbf{G}(G; n, q)$ Maker's graph contains a dangerous q-fan.

Proof. Let G be a graph which fulfils the assumption of Lemma 9, constants $\delta < 1$, C_1 , c_1 and n_1 be chosen as in Lemma 6, let C_2 and n_2 be as in Lemma 7 and finally let $q_0 = q_0(\delta)$ be defined as in Fact 8. We shall find a winning strategy for Breaker in $\mathbf{G}(G; n, q)$ where $n \ge n_3 = \max(n_1, n_2, (C_3^{-1}q_0)^{m(G)})$, $q \ge C_3 n^{1/m(G)}$ and $C_3 = 2\max(C_1, C_2)$.

Breaker's strategy is based on two strategies, say S_1 and S_2 , given by Lemma 6 and Lemma 7 respectively, provided we consider $\mathbf{G}(G;n,q/2)$ in both the cases. Notice that n and q/2 are as large as required in the lemmas. Therefore, if Breaker in $\mathbf{G}(G;n,q)$ plays S_1 and S_2 at the same time, then at no point of the game Maker's graph contains a dangerous s-flower with $s = \lfloor (q/2)^{1-\delta} \rfloor$, or $\frac{1}{2} \binom{q/2}{t}$ simple t-fans where $t = \lfloor (q/2)^{\delta/3} \rfloor$.

We claim that then at no moment of the game Maker's graph contains a dangerous q-fans. Indeed, assume that it is not the case and let $\{F_1^{v_1w_1},\ldots,F_q^{v_qw_q}\}$ be such a q-fan. Let us define an auxiliary graph F' such that $F_1^{v_1w_1},\ldots,F_q^{v_qw_q}$ are vertices of F' and $\{F_i^{v_iw_i},F_j^{v_jw_j}\}$ is an edge of F' if $|V(F_i^{v_iw_i})\cap V(F_j^{v_jw_j})|\geq 3$. Observe that F' fulfils the assertions of Fact 8 since, due to Breaker's strategy, Maker's graph contains no dangerous s-flowers which yields $e(F')<(q/2)^{1-\delta}q< q^{2-\delta}$. Moreover we have assumed $q\geq C_3n^{1/m(G)}\geq q_0$ so, by Fact 8, we have at least $\frac{1}{2}\binom{q}{t}$ independent sets of size t in F' and hence at least $\frac{1}{2}\binom{q}{t}$ simple t-fans in F, which contradicts our assumption.

Proof of Theorem 1(ii). Let G be a graph without isolated vertices such that $v(G) \ge 3$.

We start with the assumption that G is a forest. Then either G contains a path on three vertices, or it consists of v(G)/2 disjoint edges. In the first case m(G) = 1 and, clearly, if q > 2n - 2, then Breaker can win $\mathbf{G}(G; n, q)$ selecting in each move all the edges adjacent to vertices v, v', where $\{v, v'\}$ is the pair chosen by Maker in his last move. In the second case Breaker's winning strategy is even easier — if we set $q \ge n^{1/m(G)} = n^2$ the game is over after the first round.

Now suppose that G contains a cycle. Without loss of generality we can assume that G is m-maximal. Let $C_0 = 2C_3$ and $n_0 = n_3$, where C_3 and n_3 are constants defined as in Lemma 9, and fix $n \geq n_0$, $q \geq C_0 n^{1/m(G)}$. Note that Maker can win G(G;n,q) only if after some Breaker's move he has a dangerous G-graph. Thus, after every Maker's move Breaker considers a family \mathcal{G} of all "new" dangerous $\overline{\mathcal{G}}$ -graphs in Maker's graph. Observe that all G-graphs from \mathcal{G} contain the last edge selected by Maker and thus they form a dangerous t-fan. Now Breaker can win G(G; n, q) if he follows his strategy for G(G;n,q/2) which, according to Lemma 9, allows him to prevent dangerous (q/2)-fans in Maker's graph, and uses his remaining q/2choices to block the pairs $\{v_1, w_1\}, \dots, \{v_t, w_t\}$ if Maker creates a dangerous t-fan $\{F_t^{v_1w_1}, \dots, F_t^{v_tw_t}\}$ with t < q/2.

Finally, we remark that the constants c_0 and C_0 in Theorem 1 which follow from the proof are typically far apart, while we expect that they can be chosen arbitrarily close to each other.

Conjecture. For every graph G and $\varepsilon > 0$ there exist constant c > 0 and a natural number n_0 such that for every $n \ge n_0$ the following holds.

- (i) If $q \leq (c-\varepsilon)n^{1/m(G)}$ then Maker can win the game $\mathbf{G}(G;n,q)$. (ii) If $q \geq (c+\varepsilon)n^{1/m(G)}$ then Breaker has a winning strategy for $\mathbf{G}(G;n,q)$.

The above conjecture remains open even for very simple cases — in fact for no graph G which contains a cycle the existence of such a constant c for $\mathbf{G}(G;n,q)$ has been shown.

References

- [1] J. Beck: Van der Waerden and Ramsey type games, Combinatorica, 1 (1981), 103–
- [2] J. Beck: Remarks on positional games. I, Acta Math. Acad. Sci. Hungar., 40 (1982),
- [3] J. Beck: Random graphs and positional games on the complete graph, Annals of Discrete Math., 28 (1985), 7–13.

488 BEDNARSKA, ŁUCZAK: POSITIONAL GAMES AND RANDOM STRATEGIES

- [4] J. Beck: Deterministic graph games and a probabilistic intuition, *Combin. Probab. Comput.*, **3**(1) (1994), 13–26.
- [5] V. CHVÁTAL, P. ERDŐS: Biased positional games, Annals of Discrete Math., 2 (1978), 221–228.
- [6] P. Erdős, J.L. Selfridge: On a combinatorial game, J. Combin. Theory Ser. A, 14 (1973), 298–301.
- [7] S. Janson, T. Luczak and A. Ruciński: An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, in: *Random Graphs* (M. Karoński, J. Jaworski and A. Ruciński, Eds.) Wiley, Chichester 1990, 73–89.
- [8] A. Pekeč: A winning strategy for the Ramsey graph game, Combin. Probab. Comput., 5 (1996), 267–276.

Małgorzata Bednarska

Department of Discrete Mathematics Adam Mickiewicz University, Poznań, Poland mbed@amu.edu.pl

Tomasz Łuczak

Department of Discrete Mathematics Adam Mickiewicz University, Poznań, Poland tomasz@amu.edu.pl